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Abstract

In this paper we derive equations governing the dynamics of the Majorana stellar represen-

tation (MSR) of spinor Bose-Einstein condensates (BEC). We do this under the single-mode

approximation in zero potential in the absence of Zeeman effects. We first provide an overview

of the MSR: a description of a spin-F state as 2F spin-1/2 states, each represented as a point

(star) on the unit sphere. Using geometric techniques, we derive expressions for the Berry phase

and connection of spin-1 states in terms its representative stars, building on existing results.

Then, we show that for spin-1 condensates, the motion of the aforementioned system is two

vectors precessing with a fixed angle about their barycenter, which is a constant of the motion.

Using the expressions derived earlier, we compute the Berry phase for this regime. Finally, we

present a method for estimating an s-wave scattering coefficient based on the time period of the

oscillation of the Majorana dynamics, before touching briefly on aspects of the spin-2 dynamics.
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Throughout this paper, a range of commonly-known formulae are used. They are listed here
for convenience.

Trigonometric

cos
x

2
= ±

√
1 + cos x

2
(1)

sin
x

2
= ±

√
1− cosx

2
(2)

cos2 x =
1 + cos 2x

2
(3)

sin2 x =
1− cos 2x

2
(4)

tan (π/2− x) = cot x (5)

tan θ/2− cot θ/2 = cot θ (6)

Vector Calculus

(~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c) (7)
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Chapter 1

Introduction

“Nobody really understands quantum

mechanics.”

Richard Feynman

Over the last century, quantum mechanics has become a frontier of modern physics, describ-

ing how light and matter behave with unerring accuracy. Modern-day technology, including

lasers, transistors and magnetic resonance imaging in healthcare, relies extensively on quantum

phenomena. The fascinating yet bizarre nature of the quantum realm continues to inspire gener-

ations of students (see Figure 1.1), motivated by the theoretical and experimental breakthroughs

in the field. This paper brings together three key developments in modern quantum mechanics:

spin, Bose-Einstein condensates and Berry’s phase.

‘Spin’ as a concept was first proposed by Wolfgang Pauli in 1925 [1] as an intrinsic form of

angular momentum, or an internal degree of freedom, but its experimental origin dates back

to 1922, in the Stern-Gerlach experiment. In this experiment, a beam of silver atoms was

fired through a magnetic field onto a photographic plate [2, 3, 4]. Classically, it was expected

that the beam would have a continuous spread, showing a continuous line on the plate, but

instead, the beam split into 2 distinct points. Stern and Gerlach intended to demonstrate the

quantisation of angular momentum according to Bohr’s so-called ‘old‘ quantum theory (now

referred to as old as it is accepted to be incorrect). The results matched Bohr’s prediction,

but it was realised shortly afterwards that the interpretation of the Stern-Gerlach experiment
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CHAPTER 1. INTRODUCTION

was incorrect. The experiment had in fact measured the internal spin degree of freedom of the

electron - unbeknownst to the duo at the time as the concept did not yet exist! It was not

until 1927 that theoreticians realised that Stern and Gerlach’s work had measured the electron’s

spin. Soon after, Markus Fierz proved the spin statistics theorem in 1939 [5] showing that

particles could be classified as either: fermions, which have half-integer spin, or bosons, which

have integer spin. His argument was generalised by Pauli in 1940 [6], who in the same paper

also extended his result from 1925 that identical fermions can not occupy the same quantum

state, now known as the Pauli exclusion principle.

Pauli’s exclusion principle highlights one of the key differences between fermions and bosons

and has huge ramifications: bosons have no restriction regarding occupying the same quantum

state. As the theory of spin was being developed, in 1924, Jagdish Chandra Bose developed some

ideas on the statistics of photons [7] and Albert Einstein built on these in 1925 [8], predicting

that a sufficiently large number of bosons could occupy the same quantum state at a sufficiently

low temperature. A system in this regime is called a Bose-Einstein condensate (BEC). It was

shown that these systems would have extremely interesting properties, for example being linked

to the superfluidity of helium [9]. However, the temperatures required to achieve Bose-Einstein

condensation are so close to absolute zero that for a long time it was virtually impossible to

observe them. Consequently, relatively little was done until 1995, when the first BEC was

experimentally realised using rubidium atoms in a single spin state [10]. Not long after, in 1998,

influential papers by Tin Lun Ho [11] and Tetsuo Ohmi and Kazushige Machida [12] paved the

way for significantly more work in this area, which remains an active area of research today.

Spin plays an important role in the theory of BECs. Since BECs require extremely low

temperatures, they are incredibly unstable. Most experimental realisations require them to be

‘trapped’. This is mostly done via magnetic and optical traps. In the case of magnetic traps, the

spin degrees of freedom of the condensate are frozen. This does not occur in the cases of optical

traps. We distinguish between these two cases by referring to the former case as scalar BECs

and the latter case as spinor BECs. More broadly, different spins result in characteristically

different behaviours. In this paper we will focus on (spin-1 and 2) spinor BECs.

Mathematically, spin-1/2 states can be described by a 2-dimensional complex vector. A
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CHAPTER 1. INTRODUCTION

priori, such a quantity has 4 (real) degrees of freedom, but with some work these states can be

visualised on a 3-dimensional sphere, the Bloch sphere. This suffices for spin-1/2 systems, but

the exact construction cannot be repeated for higher spins. In a relatively understated work,

Ettore Majorana outlined a new geometric idea enabling visualisation of arbitrary spin systems

on the unit sphere [13]. In particular, his method provided a means of visualing a spin-F state

as 2F states (also referred to as points or stars) on the unit sphere. This is called Majorana’s

stellar representation (MSR).

We require one more important ingredient. In 1984, Michael Berry, generalising results from

the 1950s, found that under certain conditions, a quantum system evolving adiabatically (‘slowly’

in a sense) remains in its initial state, up to a phase [14]. This phase has two contributions

- one contribution is related to the time evolution of the state, and the other on the set of

parameters the system depends on. The former is the dynamical phase and the latter is the Berry

phase. The Berry phase reveals the underlying geometric nature of quantum mechanics and has

applications in many areas of physics, including magnetism, Hall effects and the classification of

insulators [15].

This paper brings together all of the aforementioned ideas. In particular, we analyse the

dynamics of spinor BECs in the context of the MSR and Berry phase.

Chapter 2 covers background material on which we build throughout the paper. Section

2.1 provides a summary of visualising spin-1/2 states via the Bloch sphere. Having done this

for spin-1/2 systems, section 2.2 outlines how to extend this to visualise a spin-F state as 2F

spin-1/2 states, and thus 2F points on the Bloch sphere, using the MSR. Finally, Section 2.3 is

a recap of adiabatic quantum mechanics and Berry’s phase. This chapter is mostly background

material apart from a few key results used later.

Chapter 3 focuses on geometrical approaches to linking the Berry phase with the MSR. In

this chapter we derive existing results from a few papers in more detail and extend these for use

in Chapter 4. Section 3.1 provides an interpretation of the Berry curvature for spin-1/2 systems

in terms of an area element. Section 3.2 extends this discussion to spin-1 systems, eventually

deriving results for the Berry phase in terms of the MSR.

Chapter 4 applies the theory we have developed to spinor BECs. Section 4.1 provides

10



CHAPTER 1. INTRODUCTION

background on the development of BECs. We then analyse BEC equations of motion for spin

1 and 2 sections in Sections 4.2 and 4.3 respectively. The spin 1 dynamics have a natural

interpretation in the MSR whereas the spin 2 dynamics are significantly more complicated.

Finally, using the theory developed in chapter 3, we relate the Berry phase for these states to

the Berry phase for states in the MSR. In particular, we conclude that the Berry phase for

eigenstates of the spin 1 system is just the sum of the Berry phase for states in the Majorana

representation. Additionally, the Majorana dynamics provide us with a way of estimating

scattering lengths. Apart from the background information, this chapter is entirely original.

Chapter 5 summarises results from this paper and discusses avenues for further research.

Figure 1.1: xkcd 1861
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Chapter 2

Background

“Einstein said that if quantum

mechanics were correct then the world

would be crazy. Einstein was right - the

world is crazy.”

Daniel M. Greenberger

We begin with a review of the Bloch sphere. We then see how to naturally extend this

visualisation to systems with higher spin and close the chapter with a review of the Berry phase.

2.1 Spin-1/2

For a spin-1/2 particle with orthonormal basis |↑〉 = |1/2, 1/2〉 , |↓〉 = |1/2,−1/2〉, we may

write a state as |ψ〉 = a |↑〉+ b |↓〉 for a, b ∈ C. As the Hilbert space in quantum mechanics is

projective, only the relative phase between a and b has physical meaning, so we can fix the phase

of a. By convention, we choose a to be real and positive. We further require normalisation:

〈ψ|ψ〉 = |a|2 + |b|2 = 1. These two constraints reduce the degrees of freedom to 2. We can thus

parametrise a and b by writing

|ψ〉 = cos θ/2 |↑〉+ eiφ sin θ/2 |↓〉 or for convenience ψ = (cos θ/2, eiφ sin θ/2)1 (2.1)

1We will use this streamlined notation throughout the paper

14



CHAPTER 2. BACKGROUND

(a) Basis spinors ψgreen = (1, 0), ψorange =
(0, 1)

(b) ψgreen = (1, 2), ψorange = (3 + 5i, 4) (nor-
malised)

Figure 2.1: Visualisations of example states on Bloch sphere

for 0 ≤ θ ≤ π, 0 ≤ φ < 2π. This representation is always unique as the point represented

by θ and φ is unique. We identify this spinor with spherical polar coordinates (θ, φ) on

the unit sphere r = 1 (the physics ISO convention) with Cartesian representation ~m =

(sin θ cosφ, sin θ sinφ, cosφ). However, ~m can also be recognised as the expectation value of the

spin operators in the state ψ2: with ~σ = (σ̂x, σ̂y, σ̂z) the Pauli vector, the vector of spin-1/2

matrices, we have that ~m = 〈σ̂〉. Noting that quantum mechanical observables are necessarily

expectations, the Bloch sphere thus shows the direction a state is ‘pointing’ in, or ‘most spinning’

in.

Figure 2.1 shows examples of states visualised on the Bloch sphere, and consequently which

direction the spins for these states ‘most point in’. Note that the states |↑〉 and |↓〉 correspond

to the north and south pole respectively. These states are orthogonal in Hilbert space, but do

not corresponds to the orthogonal basis vectors in R3. This is due to the factor of 2 in the

parametrisation in equation 2.1 - the physical interpretation is states cannot be both spin up

and down at the same time, but can have a non-zero measurement in e.g. both the x and z

directions at the same time.

In summary, the Bloch sphere provides a useful way of visualising a spin-1/2 quantum state.

2This is why we choose a parametrisation for equation 2.1 in terms of θ2 when in fact kθ suffices for any k ∈ R:
the factor of 2 is required to have the physical interpretation of the Bloch sphere representation ‘pointing in the
direction of the spin’. This is a manifestation of the double cover of SU(2) onto SO(3).
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CHAPTER 2. BACKGROUND

It is by no means the only way of geometrically interpreting states - see for example [1], where

states are visualised instead on unit disks - but it is very commonly used and we shall use it

extensively in this paper. It is heavily used to study density matrices [2]; quantum computation

[3]; optics [4] (where it is often called the Poincaré sphere) and more [5, 6].

2.1.1 Geometry of the Bloch sphere

As a side remark, it is important to note that the Bloch sphere is not a sphere in the most

basic sense. Consider the poles: θ = 0 corresponds to |↑〉, but θ = π corresponds to eiφ |↓〉

for φ ∈ [0, 2π) - the south pole is multivalued. This degenerate point cannot be removed and

highlights the fact that the Bloch sphere is topologically a sphere, but geometrically a hemisphere

(the south pole corresponds to the equator). Interested readers can study the geometry of Hopf

fibrations [7, 8] but this is beyond the scope of this text.

2.2 Majorana’s stellar representation

Given the useful geometric insight provided by the Bloch sphere, one can ask whether higher

spin states can be represented in a similar way.

Let us first consider a spin-1 spinor ψ = (a, b, c) ∈ C3, with 6 real degrees of freedom. As

in the spin-1/2 case we can remove 2 degrees of freedom via normalisation and a global phase,

leaving 4 degrees of freedom. This cannot be represented on the 2-sphere as we would like, so

we require another approach.

Notice that the spin-1 (spinor) has twice the degrees of freedom of the spin-1/2 (spinor).

We can therefore try to represent the spin-1 as two spin-1/2s and visualise each of these on the

Bloch sphere, providing a geometrical interpretation of the original spin-1/2 state. It turns out

that this is possible: more generally, we can represent a spin-F as 2F symmetrised spin-1/2

points on the Bloch sphere (symmetrised in the sense that order does not matter). This idea

was initially presented as a side remark by Ettore Majorana3 in 1932 [10] - to him, this was so

3Although discovered in the context of quantum mechanics, Majorana’s discovery applies more generally to
visualise the complex projective space CPn - it follows that CPn = S2 × S2 × · · · × S2/Sn, where Sn is the
symmetric group of permutations of n objects [9]
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obvious that it required just 4 lines of development! The 17-year-old Julian Schwinger stumbled

upon this paper in 1935 and was perplexed - he spent a considerable amount of time on his own

calculations before matching Majorana’s results in 1937 [11], although he left, in his own words,

“the most important part of the paper [showing he matched Majorana’s result] implicit” [12].

Despite this representation providing a revolutionary way of interpreting angular momentum in

quantum mechanics, the works by Majorana and Schwinger remain relatively unknown4. We

now provide some motivation for Majorana’s interpretation.

The idea is as follows: associate a polynomial to each point in Cn and the roots of this

polynomial to points in CPn−1, then identify the roots with the stars5. In order to make

such a visualisation with 2F points (or stars) useful, we demand some key properties. Since

the representation is reducing to the Bloch sphere, we demand that SU(2) transformations

correspond to ordinary rotations of the sphere. To do this, we demand a state of spin ‘up’ in

the direction given by the unit vector ~m to be represented by n = 2F points sitting at the point

where ~m meets the sphere. This generalises naturally: demand a state that is an eigenstate

of ~m · ~F with eigenvalue k to be represented by F + k points at this point and F − k points

at the antipode. Note that since we are working with roots of a polynomial, the Majorana

representation leaves out information about the phase [16].

2.2.1 Mathematical formulation

More precisely, consider a spin-F state ψ =
∑F

α=−F Aα |α〉 = (AF , . . . , AF ), where Fz |α〉 = α |α〉

and the Aα are a set of normalised complex coefficients. The polynomial we identify with the

spinor ψ, which we shall refer to as the characteristic polynomial, is

fψ(ζ) =
2F∑
α=0

√(
2F

α

)
A∗F−αζ

α

The 2F complex roots of fψ(ζ) are identified uniquely with spherical polars via stereographic

4The historical development is fascinating. Discussions can be found in Schwinger’s own words [12] and
expositions on the subject [13, 14]

5Theoretically, since a spin F irreducible representation of SU(2) has dimension 2F + 1 and all irreducible
representations of SU(2) are symmetric tensor products of the fundamental spinor representation, every finite
dimensional Hilbert space can be thought of as a symmetric tensor product of fundamental SU(2) representation
spaces [15]
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projection ζk = tan θk
2
eiφk , and thus uniquely determine the coefficients Aα and therefore |ψ〉 up

to normalisation and an overall phase factor (a motivation for this can be found in [9]).

Recall that the time reversal operator T̂ satisfies the anti-commutation relation {T̂ , i} = 0

and its action on a general spin-F spinor is (T̂ψ)m = (−1)mψ∗F−m. This corresponds to taking

the roots zi 7→ −1
z∗i

, which just corresponds to the antipodal point on the sphere6.

2.2.2 Examples and useful results

This section provides some examples to help understand the stellar representation and consists

of some original calculations which will be used in later sections, as well as some examples to

help visualise the stellar representation. Corollaries 2.2.3.1 and 2.2.3.2 in particular will be

relied upon later. We also touch on applications of the stellar representation in other fields.

Firstly, note that the spin-1/2 stellar representation reduces to the standard Bloch sphere

representation:

|ζ1/2〉 =
1∑

α=0

√(
1

α

)
ζα |F − α〉 = ζ0 |1〉+ ζ |0〉 = |1〉+ eiφ tan θ/2 |0〉

and the magnitude of this state is 1 + tan θ/22 = sec θ/22, so the normalised spinor is

ψ1/2 = (cos θ/2, eiφ sin θ/2), as expected.

The following results and figures provide specific examples of states.

Theorem 2.2.1. The spin-F state |m〉 corresponds to m+ F |↑〉 states.

Proof. This is by construction - in full detail, represent the state |ψ〉 = |m〉 as the spinor em+F ,

where ei is the canonical ith basis vector. The characteristic polynomial is

fψ(ζ) =
2F∑
α=0

√(
2F

α

)
A∗F−αζ

α =
2F∑
α=0

√(
2F

α

)
δF+m−αζ

α =

√(
2F

F +m

)
ζF+m

which has F +m repeated 0s as roots. For each complex root ζ = 0 we have θ = 0 (mod 2π)

and φ = 0 (mod 2π), which corresponds to the state |↑〉 on the Bloch sphere.

6The defining polynomial for the Majorana representation is often taken as (what we have described as) the

time-reversed one, that is, fψ(ζ) =
∑2F
α=0(−1)α

√(
2F
α

)
Aαζ

2F−α [9]
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(a) Spin 1.5 ψ = (1, 0, 0, 0) (b) Spin 3 ψ = (3, 0, 0, 0, 0, 0, 5i)

Figure 2.2: Example Majorana representations: the spin 1.5 state (left) has 3 repeated points
at the North pole and the spin 3 state (right) has points forming a regular hexagon

Theorem 2.2.2. The spin-F state |ψ〉 = a |m〉+ b |−m〉 corresponds to a polygon of degree m

on the sphere.

Proof. Let |ψ〉 = a |m〉+ b |−m〉. The characteristic polynomial is

0 = fψ(ζ) =
2F∑
α=0

√(
2F

α

)
A∗F−αζ

α

=

√(
2F

0

)
a∗ζ0 +

√(
2F

2F

)
b∗ζ2F

= a∗ζ2F + b∗ = 0

=⇒ ζ2F +
(a
b

)∗
= 0

These are the 2F -th roots of unity, with complex roots z, zω, . . . , zω2F−1 where z =

2F
√
−
(
a
b

)∗
=

2F√
reiν =

2F√
reiν/2F and ω = e

iπ
F . Then θ = 2 arctan(|z|) and the φk = ν

2F
+ kπ

F

for k = 0, . . . , 2F − 1. Thus permuting 1→ i etc corresponds to rotating π
4m

In the literature a specific example of the above states are referred to as NOON states [9]:

this is because, in the angular momentum eigenbasis/Dicke basis |j +m, j −m〉 = |n− k, k〉′

the NOON states corresponding to equidistant stars around the equator are
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|NOON〉 = |n, 0〉′ + |0, n〉′ = |n/2, n/2〉+ |n/2,−n/2〉

where we have rewritten in our basis for comparison with Theorem 2.2.2 (with a = 1, b = −1).

The NOON states have applications to quantum metrology [9] and quantum optics [14].7

Theorem 2.2.3. The spinor corresponding to points (θ1, φ1), (θ2, φ2) is

ψ =


e−i(φ1+φ2) tan θ1

2
tan θ2

2

−(e−iφ1 tan θ1
2

+ e−iφ2 tan θ2
2

)/
√

2

1


Proof. The roots of the characteristic polynomial are eiφ1 tan θ1

2
, eiφ2 tan θ2

2
. The polynomial is

thus

(
ζ − eiφ1 tan

θ1

2

)(
ζ − eiφ2 tan

θ2

2

)
= ζ2−ζ

(
eiφ1 tan

θ1

2
+ eiφ2 tan

θ2

2

)
+ei(φ1+φ2) tan

θ1

2
tan

θ2

2

By definition fψ(ζ) =
∑2

α=0

√(
2
α

)
A∗1−αζ

α so we read off A∗1−α and therefore A as stated.

Corollary 2.2.3.1. The spinor for antipodal points given (θ, φ) is

ψ =


−e−2iφ

−e−iφ cot θ/
√

2

1


Proof. ~n1 = −~n2 graphically corresponds to antipodal points. In spherical coordinates the point

antipodal to (θ, φ) is (π − θ, φ+ π). By Theorem 2.2.3 and trigonometric identities 5 and 6,

7As an interesting aside, the state ψ = (1, 1, . . . , 1) yields the polynomial
∑2F
α=0

√(
2F
α

)
ζα. This seemingly

simple polynomial is not well-studied, but we can say a bit about its roots. It is a palindromic real polynomial,
so its roots either lie on the unit circle (when the conjugate is also the reciprocal of the root) or there are sets of
4 roots of form α, ᾱ, 1/α, 1/ᾱ that do not lie on the unit circle [17]. For F < 10, the roots all lie on the unit
circle, but we see a divergence for higher F .
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(a) Antipodal points at (θ, φ) = (π/2, π) (b) Repeated points at (θ, φ) = (π/3, π/4)

Figure 2.3: Examples of Corollories 2.2.3.1 and 2.2.3.2

ψ =


e−i(2φ+π) tan θ

2
tan π−θ

2

−(e−iφ tan θ
2

+ e−i(φ+π) tan π−θ
2

)/
√

2

1

 =


−e−2iφ tan θ

2
cot θ

2

−e−iφ(tan θ
2
− cot θ

2
)/
√

2

1

 =


−e−2iφ

−e−iφ cot θ/
√

2

1



Corollary 2.2.3.2. The spinor for repeated points at (θ, φ) is

ψ =


e−2iφ tan2 θ

2

−
√

2e−iφ tan θ
2

1


Proof. This follows immediately from Theorem 2.2.3 with θ = θ1 = θ2, φ = φ1 = φ2.

2.3 Berry phase, connection and curvature

In a seminal paper in 1984, Michael Berry showed that a system undergoing adiabatic evolution

in an eigenstate of a Hamiltonian remains in the same eigenstate but obtains a phase factor

[18]. This phase has a contribution from the state’s time evolution, which is called its dynamical
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phase, and a contribution from variation of the eigenstate with the changing Hamiltonian,

which is called its Berry or geometric phase. The Berry phase has associated with it the Berry

connection and the Berry curvature tensor, which we define below. The curvature is gauge

invariant, whereas the connection and phase are not; the phase is gauge invariant modulo 2π.

These quantities are more pervasive than they may initially seem - in particular, they are

of importance outside of the adiabatic regime too. For example, the Berry phase explains the

Aharonov-Bohm effect, in which a charged particle is affected by an electromagnetic potential

despite being confined to a region of zero electromagnetic field8 [18, 19]. Further, the Berry

phase and curvature have a related topological invariant called the Chern number, which is

critical in quantum hall physics9 and the field of topological insulators10 [21].

In this paper we will focus mostly on the Berry phase and its relationship with the Majorana

representation. The remainder of this section outlines some key properties of the Berry phase.

We begin with the Quantum Adiabatic Theorem and the relevant definitions.

Theorem 2.3.1 (Quantum Adiabatic Theorem). For a slowly varying Hamiltonian Ĥ = Ĥ(~R)

depending continuously on a set of real parameters ~R(t) in the time range T , the solution of

the Schrodinger equation Ψ(t) with initial conditions Ψ(0) = ψn(0), where ψn(t) is the nth

instantaneous eigenstate satisfying Ĥ(~R) |ψn, ~R〉 = En(~R) |ψn, ~R〉, may be approximated as

||Ψ(t)− ψadiabatic(t)|| ≈ o

(
1

T

)
where the adiabatic approximation is

|ψadiabatic(t)〉 = eiθn(t)eiγn(t) |ψn(t)〉

Here, θn(t) = −1
~

∫ t
0
En(t′)dt′ is the dynamical phase and γn(t) =

∮
C
an · d~R is the Berry

phase, with an = i 〈ψn| ∇~R |ψn〉 the Berry connection, where C is a closed curve in parameter

space such that |ψn, ~R〉 is single-valued and differentiable along C. The Berry curvature for the

8This discovery developed the idea that the vector potential is genuinely ‘physical’ - it was previously thought
of as only a mathematical convenience.

9For example, the Hall conductivity can be written terms of the Chern number, which is quantised [20]
10Here, the Berry phase plays a role similar to that of genus in the Gauss-Bonnet theorem from geometry.
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n-th eigenstate is fn,αβ = ∂
∂Rα

an,β − ∂
∂Rβ

an,α (the n is frequently dropped for convenience).

Lemma 2.3.2. The Berry phase is real.

Proof. Note that 〈ψn|ψn〉 = 1 so

0 = ∇〈ψn|ψn〉 = 〈∇ψn|ψn〉+ 〈ψn|∇ψn〉 = an + a∗n = 2Re(an)

Consequently, the Berry connection and thus Berry phase are real.

Lemma 2.3.3 (Gauge freedom of Berry phase). The Berry phase is gauge invariant modulo 2π

Proof. For any given eigenstate |ψ〉 of Ĥ, we have that |ψ′〉 = e−iα |ψ〉 is an equally valid

eigenstate of Ĥ. Further, provided α(T ) = α(0) + 2πn for n ∈ Z we have that |ψ′(T )〉 = |ψ′(0)〉.

Now

γ′ = i

∫ t

0

〈ψ′|ψ̇′〉 dt′ = i

∫ t

0

〈ψ′| − iα̇e−iαψ + e−iαψ̇〉 dt′

= −i2
∫ t

0

α̇eiαe−iα 〈ψ|ψ〉 dt′ + i

∫ t

0

eiαe−iα 〈ψ|ψ̇〉 dt′

= γ + 2πn

The typical example of Berry phase is that of a spin in a magnetic field. Suppose a spin-half

particle is under the effect of a slowly varying magnetic field of constant magnitude Ĥ = − ~B(t)·~σ

with ~B(0) = ~B(T ).

In three dimensions, we may express the eigenstates as

|↑n〉 = cos
θ

2
|↑〉+ eiφ sin

θ

2
|↓〉

|↓n〉 = sin
θ

2
|↑〉 − eiφ cos

θ

2
|↓〉

where |↑〉 , |↓〉 are eigenstates of σz.

We first compute the Berry connection:
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a↑φ = i 〈↑n |∇φ| ↑n〉

= i

(
cos

θ

2
〈↑|+ e−iφ sin

θ

2
〈↓|
)(

ieiφ/2 sin
θ

2
|↓〉
)

= − sin2 θ

2

Similarly, a↓φ = − cos2 θ
2
, a↑θ = a↓θ = 0. Consequently for the |↓〉 state the Berry curvature

is fθφ = ∂θaφ − ∂φaθ = 1
2

sin θ. Upon a change of phase, for example taking the |↓〉 eigenstate

to be e−iφ sin θ
2
|↑〉 − eiφ cos θ

2
|↓〉, the connection changes to a↓φ = sin2 θ

2
but the curvature is

unchanged11. The Berry phase for a given curve can be computed using the connection - for the

curve given by θ = π/2, φ ∈ [0, 2π) we have γ = −1/2
∫ 2π

0
dφ = −π. This is −1/2 times the

solid angle subtended by the path, an example of a more general result which we prove in the

next chapter.
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Chapter 3

Geometrical interpretations of Berry

phase

“Geometry draws the soul towards

truth.”

Plato

The previous chapter provided background on the key ideas we will be exploring in this paper

in the context of spinor Bose-Einstein condensates in the following chapter. The underlying

theme throughout is the use of geometry to improve our understanding of the dynamics. As

such, this chapter focuses on more geometrical methods for understanding the Berry phase,

connection and curvature. In particular, we geometrically derive expressions for the curvature

and also derive expressions for the Berry phase of a spin-1 state in terms of the Berry phases

of its 2 spin-1/2 states in the stellar representation. The main results in this chapter relate to

spin-1 but it is instructive to first develop the spin-1/2 theory.

3.1 Berry curvature

We formalise the notation used in the previous chapter following [1]. In the stellar representation,

a spin-F spinor χ is described by a fully symmetrised collection of 2F spin-1/2 states, where

each spin-1/2 state is parametrised in terms of two coordinates Ω = (θ, φ) on the unit sphere.
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In this representation,

|χ〉 =
1

N

∑
{σ}

(
2F∏
i=1

⊗ |Ωσi〉

)
=

√
(2F )!

N
|~Ω〉

where N is a normalisation constant, and the sum over σ runs over the (2F )! permutations

of the 2F labels for the spin-half parts. We also define |~Ω〉 as the unnormalised sum over

permutations of the tensor product.

3.2 Berry phase

In this section, we prove the result that for a spin-1/2 state, the Berry phase can be interpreted

as half the solid angle subtended by the closed curve. We do so in two ways - the second in a

more geometrical way. This second method more easily generalises to higher spin.

Theorem 3.2.1. The Berry phase for spin-1/2 is half the solid angle subtended by the curve.

Proof. We start by considering the Berry curvature fab = ∇ × Aa = ∂aAb − ∂bAa. We have

aa = i 〈Ω| ∂a |Ω〉. We have that 0 = ∂a 〈Ω|Ω〉 = (∂a 〈Ω|) |Ω〉 + 〈Ω| (∂a |Ω〉), so (∂a 〈Ω|) |Ω〉 =

−〈Ω| (∂a |Ω〉.

fab = i∂a 〈Ω| ∂b |Ω〉 − i∂b 〈Ω| ∂a |Ω〉 = i(∂a 〈Ω|)(∂b |Ω〉)− i(∂b 〈Ω|)(∂a |Ω〉)

We now introduce the projection operator P = |Ω〉 〈Ω| as well as its orthogonal complement

Q = 1− P = 1− |Ω〉 〈Ω|, which satisfies Q |Ω〉 = 0 for a normalised spinor. Thus 0 = ∂a(Q |Ω〉),

so Q∂a |Ω〉 = −(∂aQ) |Ω〉, and similarly for 〈Ω|. Also, since Q is a projector, Q2 = Q. From

both of these results and ∂aQ = −∂aP it follows that

fab = i∂a 〈Ω|QQ∂b |Ω〉 − i∂b 〈Ω|QQ∂a |Ω〉

= i 〈Ω| ∂aQ · ∂bQ |Ω〉 − i 〈Ω| ∂bQ · ∂aQ |Ω〉

= i 〈Ω| ∂aP · ∂bP |Ω〉 − i 〈Ω| ∂bP · ∂aP |Ω〉

= itr (P [∂aP, ∂bP ]P )
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where after the first line the derivatives are understood to act solely on the object immediately

to their right (we have suppressed brackets for ease of notation). In the last step we have put

the expression in basis-independent form. Everything so far is all independent of spin. We

now specialise to spin-1/2. Since the Pauli matrices (with the identity) form a basis for our

Hermitian space, we write our projector P = 1
2
(1 + ~n · ~σ), with ~σ the vector of Pauli matrices

and ~n = 〈~σ〉 a unit vector.

Since ∂aP = 1
2
∂a~n · ~σ, by cyclicity of the trace and the fact that P is a projector, we have

fab = itr (P [∂aP, ∂bP ]P ) =
1

4
itr
(
P 2[∂a~n · ~σ, ∂b~n · ~σ]

)
=

1

4
itr (P (∂a~n · ~σ∂b~n · ~σ − ∂b~n · ~σ∂a~n · ~σ))

(3.1)

Using the well-known identity for vectors ~B1, ~B2 that ( ~B1 ·σ)( ~B2 ·σ) = ~B1 · ~B2I+i( ~B1× ~B2)·~σ,

we have

(∂a~n · ~σ)(∂b~n · ~σ) = ∂a~n · ∂b~nI + i(∂a~n× ∂b~n) · ~σ

Consequently, when expanding the commutator in equation (3.1), the dot products cancel,

and the cross products reinforce, so we are left with

fab = −1

2
tr(P (∂a~n× ∂b~n) · σ)) = −1

2
tr((I + ~n · ~σ)(∂a~n× ∂b~n) · ~σ)

Applying the same identity again,

fab = −1

2
tr((∂a~n× ∂b~n) · ~σ + ~n · (∂a~n× ∂b~n)I + ~n× (∂a~n× ∂b~n) · ~σ)

The left-most term disappears because tr~a · ~σ = 0 for any ~a. Expanding the right-most term

vector triple product shows that this term disappears too. Thus finally

fab = −~n · (∂a~n× ∂b~n)

This is the area element, so the integration yields exactly what we require upon ~n 7→ ~n/2.
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We now tackle this problem more geometrically, following the method in [1], providing

additional detail.

First, we construct an orthonormal basis {~ex, ~ey, ~n} for a given ~n, where |Ω〉 is the highest

value eigenvector of ~F · ~n. Denote the time reversed state corresponding to |Ω〉 via |Ωt〉 and

note that by Kramer’s Theorem 〈Ωt|Ω〉 = 0.

Define ~n = 2 〈Ω|~F |Ω〉 and then states corresponding to ‘x’ and ‘y’ directions with respect

to ~n as |Ωx〉 = 1√
2
(|Ω〉 + |Ωt〉) and |Ωy〉 = 1√

2
(|Ω〉 + i |Ωt〉). Using these states, we form

~ex = 2 〈Ωx|~F |Ωx〉 and ~ey = 2 〈Ωy|~F |Ωy〉, which complete the orthonormal triad.

Finally, from these we construct ~e± = ~ex ± i~ey.

Lemma 3.2.2. ~F ·~e± act as raising and lower ladder operators: ~F ·~e+ |Ω〉 = 0, ~F ·~e+ |Ωt〉 = |Ω〉

and ~F · ~e− |Ω〉 = |Ωt〉 , ~F · ~e− |Ωt〉 = 0

Proof. This follows from a direct analogy with the angular momentum operators ~F · ~ex 7→

Ŝx, ~F · ~ey 7→ Ŝy, ~F · ~n 7→ Ŝz

Lemma 3.2.3. 1
2
~e+ = 〈Ωt|~F |Ω〉

Proof. First write

~F = (~F · ~n)~n+ (~F · ~ex)~ex + (~F · ~ey)~ey = (~F · ~n)~n+
1

2
(~F · ~e+)~e− +

1

2
(~F · ~e−)~e+

where the right hand side follows from expanding the definitions of ~e±. Using the ladder

relations and acting with |Ω〉 and 〈Ωt| yields the result.

Lemma 3.2.4. ~ex · ∂α~ey = −~ey · ∂~ex

Proof. By orthogonality of ~ex and ~ey, ∂α(~ex · ~ey) = 0 = ∂α~ex · ~ey + ~ex∂α~ey

Theorem 3.2.5. For spin-1/2, the Berry connection aα = i 〈Ω|∂αΩ〉 = 1
2
~ey · ∂α~ex and the

curvature field tensor fαβ = ∂αaβ − ∂βaα = −1
2
~n · (∂α~n× ∂β~n)
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Proof. For the connection, use the ladder operators and apply the derivative to each term:

∂α 〈Ω|Ω〉 = ∂α(〈Ωt|~F · ~e−|Ω〉 = 〈∂αΩt|Ωt〉+ 〈Ωt|~F · ∂α~e−|Ω〉+ 〈Ω|∂αΩ〉

Then

〈∂αΩt|Ωt〉+ 〈Ω|∂αΩ〉 = −〈Ωt|~F · ∂α~e−|Ω〉 = −〈Ωt|~F |Ω〉 · ∂α~e− = −1

2
~e+ · ∂α~e−

where we have used Lemma 3.2.3. Finally, since 〈∂αΩt|Ωt〉 = 〈Ω|∂αΩ〉, expanding ~e± in

terms of ~ex and ~ey and using Lemma 3.2.4 yields the result.

Substituting this form of the connection into the curvature results in the cancellation of

cross-derivatives and we get

fαβ = ∂αaβ − ∂βaα =
1

2
(∂α~ey · ∂β~ex − ∂β~ey · ∂α~ex)

Since for a unit vector ~v we have ~v · ∂~v = 0, using our triad we can write ∂α~ey = λ1~ex + µ1~n

and ∂β~ex = λ2~ey + µ2~n. By orthogonality, ∂α~ey · ∂β~ex = µ1µ2 = (∂α~ey · ~n)(∂β~ex · ~n). Now since

0 = ~ex · ~n we have ∂~ex · ~n = −~ex · ∂~n so that

fαβ =
1

2
(∂α~ey · ~n)(∂β~ex · ~n)− 1

2
(∂β~ey · ~n)(∂α~ex · ~n)

=
1

2
(~ey · ∂α~n)(~ex · ∂β~n)− 1

2
(~ey · ∂β~n)(~ex · ∂α~n)

=
1

2
(~ey × ~ex) · (∂α~n× ∂β~n)

= −1

2
~n · (∂α~n× ∂β~n)

where in the third equality we have used the vector identity 7.
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3.2.1 Spin 1

We now develop similar results for the spin-1 case. We first present some lemmas and then

build to the main result of the section. The below provide further detail to results in [1].

Lemma 3.2.6. The overlap | 〈Ω1|Ω2〉 |2 = 1+ ~n1· ~n2

2
- this is a gauge independent result.

Proof. With ~ni = (sin θi cosφi, sin θi sinφi, cos θi)
T , we have

~n1 · ~n2 = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2

On the other hand, with |Ωi〉 = cos θi
2
eiφi/2 |↑〉+ sin θi

2
e−iφi/2 |↓〉, we have, with Φ = φ2−φ1

2

〈Ω1|Ω2〉 = cos
θ1

2
cos

θ2

2
eiΦ + sin

θ1

2
sin

θ2

2
e−iΦ

= cos Φ

(
cos

θ1

2
cos

θ2

2
+ sin

θ1

2
sin

θ2

2

)
+ i sin Φ

(
cos

θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2

)

Now using cos2 Φ + sin2 Φ = 1 and cos2 Φ− sin2 Φ = cos 2Φ we have (the gauge choice stops

making a difference upon taking the magnitude)

| 〈Ω1|Ω2〉 |2 = cos2 θ1

2
cos2 θ2

2
+ sin2 θ1

2
sin2 θ2

2
+ 2 cos 2Φ cos

θ1

2
cos

θ2

2
sin

θ1

2
sin

θ2

2

= cos2 θ1

2
cos2 θ2

2
+ sin2 θ1

2
sin2 θ2

2
+

1

2
cos(φ1 − φ2) sin θ1 sin θ2

=
1 + cos θ1

2
· 1 + cos θ2

2
+

1− cos θ1

2
· 1− cos θ2

2
+

1

2
sin θ1 sin θ2 cos(φ1 − φ2)

=
1

2
(1 + ~n1 · ~n2)

using trigonometric identities 3 and 4.

Lemma 3.2.6 is used in the following result, which we quote from [1] without proof.

Theorem 3.2.7. For spin 1 we have the results

aα =
1

2
~e1y · ∂α~e1x +

1

2
~e2y · ∂α~e2x +

1

2

(~n2 × ~n1) · ∂α~n1 + (~n1 × ~n2) · ∂α~n2

3 + ~n1 · ~n2
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and

fαβ =
−2

(3 + (~n1 · ~n2)2
× (2~n1 · (∂α~n1 × ∂β~n1) + 2~n2 · (∂α~n2 × ∂β~n2)+

(~n1 + ~n2) · (∂α~n1 × ∂β~n2 + ∂α~n2 × ∂β~n1))

In particular, in the ferromagnetic state ~n = ~n1 = ~n2 this reduces to fαβ = −~n · (∂α~n× ∂β~n).

In the nematic state ~n = ~n1 = −~n2 the field tensor identically vanishes.

This says that the Berry connection for a spin-1 particle is the sum of its connections in

the stellar representation as well as an interference term. We can thus determine situations in

which the interference term disappears. The following results are discussed in [2].

Corollary 3.2.7.1. If ∂α~n1 = ∂α~n2 or (~n1 × ~n2) · (∂α~n1 − ∂α~n2) then aα = a1α + a2α, that is,

the overall Berry connection is the sum of the individual connections. The first case corresponds

to a rigid rotation of the great circle connecting ~n1 and ~n2; the second corresponds to ~n1 and ~n2

sliding along the great circle connecting them (this includes the case of ~n1 = ±~n2).

Proof. This is immediate upon rewriting

aα = a1α + a2α −
1

2(3 + ~n1 · ~n2)
((~n1 × ~n2) · (∂α~n1 − ∂α~n2))

This relationship between the connections can be used to deduce a relationship between the

Berry phases. In order to do so, we reinterpret the interference term as per Lemma 3.2.8.

Lemma 3.2.8. With the barycenter ~R = 1
2
(~n1 + ~n2) and the difference ~r = ~n1 − ~n2 we have

aα = a1α + a2α + C(Θ) cos ΘR̂ · (r̂ × ∂αr̂)

where C(x) = sin2 x/(1 + cos2 x), 2Θ = arccos~n1 · ~n2 is the angle between the two normals

and the hat denotes the unit vector.
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Proof. Note first that ~R · ~R = 1
2
(1 + ~n1 · ~n2), ~r · ~r = 2(1− ~n1 · ~n2) and ~R× ~r = ~n2 × ~n1. Also,

by trigonometric identities (1) and (2) we have

C(Θ) cos Θ =
1−cos 2Θ

2

1 + 1+cos 2Θ
2

√
1 + cos 2Θ

2
=

1− ~n1 · ~n2

3 + ~n1 · ~n2

√
1 + ~n1 · ~n2

2

Consequently,

− 1

2(3 + ~n1 · ~n2)
((~n1 × ~n2) · (∂α~n1 − ∂α~n2)) =

1

2(3 + ~n1 · ~n2)
(~n2 × ~n1) · ∂α~r

=
1

(1− ~n1 · ~n2)
√

2(1 + ~n1 · ~n2)
C(Θ) cos Θ(~R× ~r) · ∂α~r

= C(Θ) cos ΘR̂ · (r̂ × ∂αr̂)

Finally, identifying

R̂ · (r̂ × ∂αr̂) = dφ

yields an expression for the Berry phase

γ = γ1 + γ2 +

∮
C(Θ) cos Θdφ (3.2)

With this expression, we can determine when the Berry phase simplifies in terms of the

Berry phase of its Majorana stars.

Corollary 3.2.8.1. When the angle between the normals is 2Θ = arccosα, the Berry phase is

γ = γ1 + γ2 +
1− α2

1 + α2

√
1 + α

2

∮
dφ

Proof. This follows from evaluating C(Θ) cos Θ with 2Θ = arccosα in equation (3.2)

Corollary 3.2.8.2. When ~n1 · ~n2 = ±1 the Berry phase is exactly the Berry phase of the

individual stars.

Proof. This follows immediately from Corollary 3.2.8.1.
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Chapter 4

Bose-Einstein condensates

“Assume a spherical cow...”

Unknown

Few phenomena demonstrate the rapid recent advances of condensed matter physics as well

as Bose-Einstein condensates. A mainstay in classical statistical mechanics education as a niche

phase of matter, BECs were only experimentally realised relatively recently. Seminal works in

1998 by Ho [1] and Ohmi and Machida [2] paved the way for a wave of developments over the

last two decades.

In this section we provide a brief introduction to the dynamics of spinor BECs. For the sake

of brevity, the full development is not presented. Further detail can be found in the numerous

references provided. The first part of this chapter provides an introduction to the phenomenon

of Bose-Einstein condensation. In the second part we analyse the spin-1 equations of motion.

Here we use the results from the previous chapters to understand the Majorana dynamics and

relate the Berry phase of the spin-1 states to that of the spin-1/2 states. In the final part, we

provide a brief overview of some of the richer dynamics in the spin-2 system. Apart from the

background material, the results in this chapter are entirely original.
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4.1 Introduction

BECs are a quantum statistical phenomenon first predicted by Einstein in 1925 [3], building

on ideas by Bose on the statistics of photons [4] (hence the name). Consider an ensemble of

N macroscopic bosons1. For suitable systems below the so-called transition temperature, a

macroscopic fraction of particles can occupy the same quantum ground state. This leads to

many interesting properties, for example, the density at the centre of a BEC is many orders of

magnitude lower than for a liquid or gas, and BECs can also form vortices. However, this comes

at a cost - these systems can only be realised for temperatures of order 10−5K or less, and so

are inherently extremely unstable. Note that the condensation2 occurs for both interacting and

non-interacting systems (although non-interacting systems are impossible to physically arrange).

Further properties are outlined in [5] and a more detailed discussion can be found in [6].

There is an important distinction between spinor and scalar BECs. When a BEC is trapped

in a magnetic potential, the spin aligns along the direction of a local magnetic field. Accordingly,

the integral degrees of freedom are frozen, and the condensate is described by a scalar order

parameter. On the other hand, when trapped in an optical potential, the internal degrees of

freedom are not frozen. The order parameter is thus a spinor, and such condensates are called

spinor Bose-Einstein condensates [6]. These are the condensates that we will analyse in the

remainder of this chapter.

In the quantum mechanical description of BECs, the condensate wave function is often

referred to as the order parameter, based on the thermodynamic definition of an order parameter

as a quantity which changes value to uniquely classify phase transitions. It can be shown that

the condensate wave function is a thermodynamic quantity that appears in the thermodynamic

limit [6] and thus the macroscopic wavefunction describes coherent properties of a many-body

system without referring to its microscopic details.

In 1995, the first Bose-Einstein condensates were created using atoms in a single spin state

of rubidium-87 [7] and of sodium-23 [8]. Shortly afterwards, in 1997, lithium-7 was also realised

1Recall that by the spin-statistics theorem, bosons are particles with integer spin and fermions are particles
with half-integer spin. By the Pauli exclusion principle, bosons can occupy the same energy state, but fermions
cannot.

2Condensation here refers to the phenomena of a macroscopic number of bosons occupying the same
microscopic quantum state
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[9]. In these systems, only those atoms in a weak-field seeking state were magnetically trapped -

these were scalar BECs as their spin degrees of freedom were frozen [6]. The first spinor BEC

was realised in a gas of spin-1 sodium-23 atoms confined in an optical dipole trap in 1998 [10],

opening up a new research arena of ultracold atomic systems. Since the earliest experiments,

many more atoms have been demonstrated to undergo Bose-Einstein condensation [11].

There are many fascinating applications of BECs. A link between superfluidity and BECs

was first suggested by Fritz London in 1938 [12]. In 1999, BECs were used to slow down light

pulses to speeds as low as 17 metres per second (approximately 38 kilometres per hour). On the

other hand, just last year, a BEC of rubidium atoms was created and observed in freefall for

over a second on board the International Space Station [13]!

4.2 Spin 1

Consider two hyperfine spin-1 bosons in the absence of both linear and quadratic Zeeman effects.

Addition of two spin 1 particles can result in a total spin of 0, 1 or 2, but since we are considering

bosons we are restricted to symmetrised states. The spin 1 states are antisymmetric [6], so the

total spin is either 0 or 2. As shown in [1], the general form of the low energy interaction is

V = g0P0 + g2P2, where gi = 4π~2aF/M characterises the strength of the interaction between

two particles with total spin F , depending on M the mass of the atom and aF the s-wave

scattering length in the total spin-F channel; PF the projection operator projecting the pair

into a total hyperfine spin F state. Noting that the eigenvalues of ~F1 · ~F2 are -2 for spin 0 and 1

for spin 2, the projection operators are

P0 = (2 + ~F1 · ~F2), P2 = (−1 + ~F1 · ~F2)

Thus, we may write

g0P0 + g2P2 = c0 + c1
~F1 · ~F2 where c0 =

g0 + 2g2

3
, c1 =

g2 − g0

3

This form of the potential leads to3 (using the summation convention)

3Some details have been skipped for brevity - the full calculation requires minimising the energy functional
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i~
∂ψm
∂t

=

(
p2

2m
+ c0ψ

†
aψa

)
ψm + c1ψ

†
a
~Fabψb · [~Fψ]m

This is the Gross-Pitaevskii equation, the general equation of motion for a spin 1 spinor

(Bose-Einstein) condensate with no (linear or quadratic) Zeeman effects or potential. Significant

work has been done on understanding these systems in optical and magnetic traps, and indeed

more general systems for higher spins [14, 15, 16]. Since our goal here is to focus on the Majorana

representation, we will simplify the problem further by using the single mode approximation

(SMA), where we assume that all atoms share the same spatial order parameter. Although

generally a useful approximation, the SMA is not entirely exact. For an investigation into

validity conditions, see [17]. A treatment beyond the single mode approximation can be found

in [18].

In the SMA we write the 3D order parameter as ψm(x, t) = φm(x, t)χ to find

χ

(
i~
∂

∂t
− p2

x

2m

)
φm = φm

(
c0|φ|2|χ|2 +

c1

φm
|χ|2φ†a ~Fabφb · [~Fφ]m

)
χ

For this equality to hold, we require the right hand bracket to be equal to a functional µ(φm).

Then

χ

(
i~
∂

∂t
− p2

x

2m

)
φm = φmµ(φm)χ

Finally, ignoring spatial dependences we arrive at

i~
∂φm
∂t

= c0φm + c1φ
†
a
~Fabφb · [~Fφ]m

for a normalised spinor.

4.2.1 Dynamics

We now consider time evolution on the Majorana sphere. The c0 term does not affect the

Majorana dynamics; it can be removed via a global change of phase φm 7→ φme
i~c0t. Since the

E[ψ] = 〈Ĥ〉. See [6] for full details
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motion is independent of c0, we can take it as 0. The dynamics in this regime therefore do not

tell us what c0 is, since we are just looking at the spinor motion and not the phase. Then, in

units where ~ = 1, with ~m = 〈~S〉 = (m1,m2,m3)T , the system reduces to (writing the system in

terms of ψ as per convention)

i
∂ψ

∂t
= c1 〈~S〉 · ~Sψ = c1 ~m · ~Sψ (4.1)

Theorem 4.2.1. ~m is a constant of motion.

Proof. Using Heisenberg’s equations of motion, we have

~̇m = i〈[H, ~S]〉 =⇒ ṁi = i〈[H,Si]〉

Thus, by repeatedly using the canonical commutation relations [Si, Sj] = iεijkSk, we have

ṁ1 = i〈[m1S1 +m2S2 +m3S3, S1]〉 = i〈m2[S2, S1] +m3[S3, S1]〉

= i〈m2[S2, S1] +m3[S3, S1]〉 = i〈−im2S3 + im3S2〉

= m2〈S3〉 −m3〈S2〉 = m2m3 −m3m2 = 0

and similarly ṁ2 = ṁ3 = 0. It follows that ~̇m = 0.

Corollary 4.2.1.1. The solution to equation (4.1) is ψ(t) = exp(−ic1 ~m · ~St)ψ(0). The time

period for the stellar representation is given by

T =
2π

c1|~m|

Note that |~m| is not necessarily 1.

Corollary 4.2.1.2. In the Majorana representation, ~n1 + ~n2 and ~n1 · ~n2 are constants of

motion. These correspond to the direction of alignment and radius of a circle on the unit sphere,

respectively.

Proof. The conservation of ~m (the expectation of ~S) tells us that the spin is polarised in a
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certain direction, but by dimensionality arguments for spin-1, conservation of ~m is not sufficient

to determine the spinor (in contrast to spin-1/2). However, it tells us that on average, the spin

points in the same direction. Thus, as the length of the ~ni is fixed, the angle between the two

normals and the barycenter are constants of the motion.

To understand the dynamics of this system, consider first eigenstates of the operator ~m · ~S.

These will be stationary in the Majorana representation as the spinor is unchanged up to

normalisation. However, this operator has a 0 eigenvalue whose corresponding eigenstates

behave slightly differently from the non-0 eigenvalues.

The 0 energy eigenstate is given by (−m1 + im2,m3,m1 + im2)T . Writing m1 + im2 = re−iφ

(the reason for the minus sign will become clear shortly) the 0 energy eigenstate is equivalently(
1,−m3

r
e−iφ,−e−2iφ

)
. This is exactly the form of the antipodal points in Corollary 2.2.3.1.

Conversely, a quick computation shows that antipodal points satisfy ~m = 0, and so the

Majorana representation is completely stationary. On the other hand, eigenstates with non-zero

energy can be identified with repeated roots. Figure 4.1 shows the (constant) time evolution of

eigenstates.

These results match what we expect - recall that the Majorana representation is constructed

such that the eigenstates of ~m · ~S are polarised in a specific direction. That the condensate

system reduces to this is a coincidence that does not occur in higher spin.

Note that ~m = 0 if and only if ~m · ~S = 0. There are thus two qualitatively different situations

when ~m = 0 and when ~m 6= 0. In the latter case, we have a defined (non-zero) direction of the

expectation value of the spin. We see a circle on the sphere and non-trivial dynamics. On the

other hand, when ~m = 0, the Majorana representation points in opposite directions: ~n1 = −~n2.

There is no evolution on the sphere since the right hand side of the differential equation is now

identically 0.

On the other hand, when the initial state ψ(0) is not an eigenstate, we observe circles on

the sphere. Figure 4.3 shows the time evolution of two example states.

We can also relate these results to ground states. To find the ground state we want to

minimise c1 〈~S〉
2
. If c1 > 0, we want to minimise 〈~S〉

2
, namely choosing the zero eigenstate,

which enforces 〈~S〉
2

= 0, which corresponds to antipodal points (the polar state). On the other
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(a) Zero energy eigenstate ψ = (−3 + 3i, 4, 3 +
3i)

(b) Non-zero energy eigenstate ψ = (1,−1 −√
3, 2 +

√
3)

Figure 4.1: Time evolution of eigenstates of ~m · ~S under c0 = 0

hand, if c1 < 0, we want to maximise 〈~S〉
2
, which corresponds to the negative eigenstate (the

ferromagnetic state). This matches the results in Ho’s seminal paper [1].

In summary, the dynamics yield either stationary normals or circles on the sphere. A

higher coefficient c1 results in higher frequency. If the time period can be measured for a

given initial condition ψ(0), we can calculate c1 and therefore the scattering length. The time

period for the Majorana representation can be computed by observing components of the spinor

|ψ1|2, |ψ0|2, |ψ−1|2 and calculating the representation at each timestep.

To close this discussion, we recast the dynamics in terms of the normal vectors. Recall

that for a spin-1/2 system with Hamiltonian Ĥ = ~B · ~σ, where ~σ is the Pauli vector, we can

reinterpret this system geometrically. With ~m = 〈ψ|~σ|ψ〉, a quick computation shows that

~̇m = 2 ~B × ~m.

We may similarly interpret the dynamics for the condensate in terms of the normals ~ni. The

mean field spin 1 equations of motion reduce to the coupled system

~̇n1 = (~n1 + ~n2)× ~n1 = ~n2 × ~n1

~̇n2 = (~n1 + ~n2)× ~n2 = ~n1 × ~n2
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(a) ψ(0) = (5, 5 + 5i, 1) (b) ψ(0) = (3 + 3i,−2 + i, 2 + i)

Figure 4.2: Time evolution of states with given initial conditions under c0 = 0. Purple is the
start of the trajectory, yellow is the end.

subject to the initial conditions given from ψ(0). From this, it follows immediately that

~n1 + ~n2 is constant and that if the normals are (anti)parallel, they remain fixed. That is, if

~n = ~n1 = ±~n2, then ~̇n = 0. Alternatively, this motion can be interpreted as circles of 0 radius.

4.2.2 Berry phase

Using our results from this chapter and the previous chapter, we can calculate the Berry phase

for states under the spin-1 dynamics.

For eigenstates, ~n1 · ~n2 = ±1, so we can express the Berry phase of the original spinor solely

in terms of the Berry phase of its stars:

γ = γ1 + γ2 (4.2)

For the zero energy eigenstate with antipodal points, if at the end of the cycle the points

return to their original states, the Berry phase is 0, and if the antipodes permute, the Berry

phase is -1 [19].

More generally, since the angle between the normals is preserved under these dynamics, by

Corollary 3.2.8.1 the Berry phase of the spin-1 state can be expressed as
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γ = γ1 + γ2 +
1− α2

1 + α2

√
1 + α

2

∮
dφ

where arccosα is the angle between the normals. This reduces to equation (4.2) when α = 0.

4.3 Spin 2

In a similar manner to the previous section, the spin 2 equations of motion can be derived.

The total spin can now be 0, 1 or 2. The completeness relation for the projection operators

is P0 + P2 + P4 = 1, and the eigenvalues of ~F1 · ~F2 are 0, 6 or 20 for F = 0, 1, 2 respectively.

Thus, after expressing the potential V = g0P0 + g2P2 + g4P4 in terms of ~F1 · ~F2 and P0 and

minimising the energy functional, the equations of motion are [6]

i~
∂ψ±2

∂t
= (c0 ± 2c1 〈fz〉)ψ±2 + c1 〈f∓〉ψ±1 +

c2√
5
Aψ∗∓2

i~
∂ψ±1

∂t
= (c0 ± c1 〈fz〉)ψ±1 + c1

(√
6

2
〈f∓)ψ0 + 〈f±〉ψ±2

)
− c2√

5
Aψ∗∓1,

i~
∂ψ0

∂t
= c0ψ0 +

√
6

2
c1 (〈f+)ψ1 + 〈f−)ψ−1) +

c2√
5
Aψ∗0

where

〈f+〉 = 〈f−〉∗ = 2
(
ψ∗2ψ1 + ψ∗−1ψ−2

)
+
√

6 (ψ∗1ψ0 + ψ∗0ψ−1)

〈fz〉 = 2(|ψ2|2 − |ψ−2|2) + |ψ1|2 − |ψ−1|2

A =
1√
5

(2ψ2ψ−2 − 2ψ1ψ−1 + ψ2
0)

This system is significantly more complicated than the spin-1 system and as such a full

analysis is not provided in this paper. Instead, we focus solely on the case c1 = 0. This is an

unphysical limit but future work can build on this by interpreting the dynamics of the c1 term

as deviations from this limiting behaviour. In the limit c1 = 0, this system reduces to

i~
∂ψ±2

∂t
= c0ψ±2 +

c2√
5
Aψ∗∓2

i~
∂ψ±1

∂t
= c0ψ±1 −

c2√
5
Aψ∗∓1,

i~
∂ψ0

∂t
= c0ψ0 +

c2√
5
Aψ∗0
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or equivalently

i~
∂ψm
∂t

= c0ψm + (−1)mA
c2√

5
ψ∗−m

As before, the c0 term does not contribute to the Majorana dynamics as it can be removed

via a gauge choice. Thus, in units where ~ = 1, we arrive at

i
∂ψm
∂t

= (−1)mA
c2√

5
ψ∗−m

Lemma 4.3.1. The magnitude of A is a constant of the motion.

Proof. Note that (with ~ = 1) A satisfies

iȦ =
1√
5

(2iψ̇2ψ−2 + 2iψ2ψ̇−2 − 2iψ̇1ψ−1 − 2iψ1ψ̇−1 + 2iψ̇0ψ0)

=
1√
5

(
2(c0ψ2 + A

c2√
5
ψ∗−2)ψ−2 + 2(c0ψ−2 + A

c2√
5
ψ∗2)ψ2

− 2(c0ψ1 − A
c2√

5
ψ∗−1)ψ−1 − 2(c0ψ−1 − A

c2√
5
ψ∗1)ψ1 + 2ψ0(c0ψ0 + A

c2√
5
ψ∗0)

)

=
1√
5

(2c0(2ψ2ψ−2 − 2ψ1ψ−1 + ψ2
0) +

2c2√
5
A(|ψ2

−2 + |ψ2|2 + |ψ−1|2 + |ψ1|2 + |ψ0|2)

=
2√
5
A

(
c0 +

c2√
5

)

It follows that

A(t) = A(0) exp

(
−it

(
2√
5

(c0 +
c2√

5

))
In particular, the magnitude of A is constant.

Corollary 4.3.1.1. When A(0) = 0, the Majorana dynamics are fixed.

Proof. This follows immediately since the magnitude of A is conserved.
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(a) ψ(0) = (1, 1, 1, 1, 1) (b) ψ(0) = (1, 0, 0, 0, 1)

Figure 4.3: Time evolution of states with given initial conditions. Purple is the start of the
trajectory, yellow is the end. On the left, the state is symmetric about the x axis and the
dynamics are confined to the region y < 0. On the right, the dynamics are trivially stationary.
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[15] C. Trallero-Giner, D. G. Santiago-Pérez, V. Romero-Rochin, and G. E. Marques, “Collec-

tive modes of trapped spinor Bose-Einstein condensates,” Journal of Physics B: Atomic,

Molecular and Optical Physics, vol. 50, no. 21, pp. 1–7, 2017.

47



CHAPTER 4. BOSE-EINSTEIN CONDENSATES

[16] C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor bose-einstein

condensates,” Physical Review Letters, vol. 81, pp. 5257–5261, Dec. 1998.

[17] S. Yi, E. Müstecaplıoğlu, C. P. Sun, and L. You, “Single-mode approximation in a spinor-1

atomic condensate,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 66,

p. 4, July 2002.

[18] J. Jie, Q. Guan, S. Zhong, A. Schwettmann, and D. Blume, “Mean-field spin-oscillation

dynamics beyond the single-mode approximation for a harmonically trapped spin-1 Bose-

Einstein condensate,” arXiv, pp. 25–27, 2020.

[19] C. Kam and R. B. Liu, “Berry phases of higher spins due to internal geometry of Majorana

constellation and relation to quantum entanglement,” 2020.

48



Chapter 5

Conclusion

”Student: Dr. Einstein, Aren’t these the

same questions as last year’s [physics]

final exam? Dr. Einstein: Yes; but this

year the answers are different.”

Albert Einstein

In this paper, we have used Majorana’s stellar representation to relate the Berry phase of

spin-1 states to the Berry phase of its representative spin-1/2 states. We interpreted mean field

spinor Bose-Einstein condensate dynamics under the single-mode approximation using the MSR,

demonstrating that the spin-1 case leads to precession about the barycenter of the two normals

and touching on aspects of the spin-2 dynamics. Using this, we derived expressions for the Berry

phase in this regime and also outlined a method to estimate s-wave scattering constants.

The geometric intuition provided by the stellar representation is useful, but the method

comes with the disadvantage of losing information about the phase of the state. In the mean field

equations of motion, this results in one of interaction terms not contributing to the dynamics in

the stellar representation. Consequently, only one of the scattering constants may be obtained

by examining the time period of the spin-1 system.

The spinor BEC calculations were done under the SMA, ignoring Zeeman effects. The SMA

is frequently employed to study these systems [1, 2] and simplifies the dynamics in the MSR,

but for a more complete understanding, this assumption can be dropped. Analytical work in
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this case for spin-1 and spin-2 systems [3, 4] can be compared to the dynamics of the MSR.

We also enforced zero linear and quadratic Zeeman terms and zero potential. In the spin-1

case, dropping these assumptions will result in deviation from the circular trajectories; this can

be investigated in future works. Some work has been done on spin-1 systems in interesting traps

[5, 6] - these results can be compared to the dynamics of the MSR.

Finally, we have looked solely at the addition of two bosons to form spin-1 and spin-2 systems,

but fermions can also undergo condensation by forming molecules or via Cooper pairs. It is

known that the behaviour of fermionic condensates is substantially different from BECs [7] - it

would be interesting to see how Majorana dynamics differ.

More broadly, the role of geometry in quantum mechanics can be investigated further at a

higher level. Hydrodynamics of BECs provide a natural area for investigating developments in

geometric mechanics such as [8].

Figure 5.1: xkcd 793
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Appendix A

Numerics

All plots and numerical calculations in this report were performed using the Quantum Toolbox in

Python (QuTiP) [1, 2]. Python tests were performed (using pytest) to verify that the analytical

results from Chapter 4 hold for spin-1, in particular, that ~m,~n1 + ~n2 and ~n1 · ~n2 are conserved.
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